Hardware-in-the-Loop Experiments on Bistability

<u>G Stepan</u>, Z Dombovari, D Bachrathy, T Insperger, D Takacs, D Hajdu, J Munoa*, Z Veraszto**

Department of Applied Mechanics, Budapest University of Technology and Economics * IDEKO, Spain

**Institute of Mechanics, ETH Zurich

ERC Advanced Grant 2014-2019

SIREN

Stability Islands: Performance Revolution in Machining European Research Council

Outline

- Why Hardware-In-the-Loop (HIL)?
- Stability islands can we reach/use them?
- Uncertainties of lobe diagrams: practice & theory
- Testing HIL to reproduce bistable zones: stick-slip
- Hopf bifurcation, stable and unstable limit cycles
- Stability, CM, secondary Hopf bifurcation in HIL
- Bistability in High-Speed-Milling (HSM)
- Experimental setup for HIL in HSM
- Outlook

Why HIL?

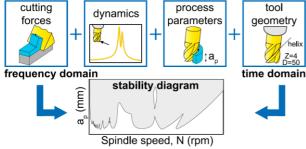
Hardware-In-the-Loop (HIL) is an experimental method that accelerates the R&D phase of new machines and technologies

- A certain part of the machine is kept physically, other parts are emulated by digitally controlled actuators based on the simulation of math models
- Similar terminology: sub-structuring
- High Speed Milling (HSM) can use it for nearreality modal tests and/or *development of new milling tool geometries*
- But: extreme challenges occur due to high speed

Outline

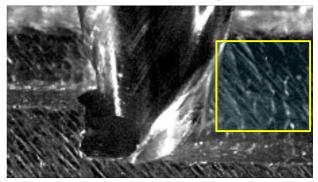
- Why Hardware-in-the-Loop (HIL) for HSM?
- Stability islands can we reach/use them?
- Uncertainties of lobe diagrams: practice & theory
- Testing HIL to reproduce bistable zones: stick-slip
- Hopf bifurcation, stable and unstable limit cycles
- Stability, CM, secondary Hopf bifurcation in HIL
- Bistability in High-Speed-Milling (HSM)
- Experimental setup for HIL in HSM
- Outlook

<u>Stability islands – can we reach them?</u>



Munoa, ..., Stepan, CIRP Annals keynote paper on chatter suppression techniques, 2016

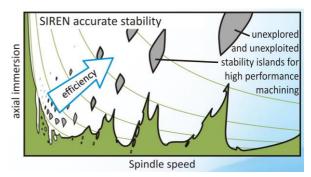
Chatter in milling



Chatter in milling



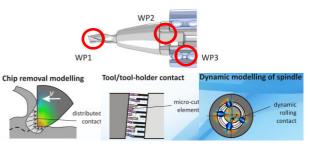
Stability islands - can we reach them?



Outline

- Why Hardware-in-the-Loop (HIL) for HSM?
- Stability islands can we reach/use them?
- Uncertainties in lobe diagrams: practice&theory
- Testing HIL to reproduce bistable zones: stick-slip
- Hopf bifurcation, stable and unstable limit cycles
- Stability, CM, secondary Hopf bifurcation in HIL
- Bistability in High-Speed-Milling (HSM)
- Experimental setup for HIL in HSM
- Outlook

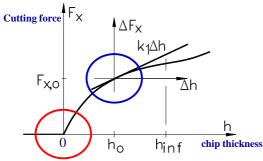
Practice: critical points in modelling



Result: large uncertainties in the lobe structure high sensitivity for perturbations

Theory: uncertainty for perturbations

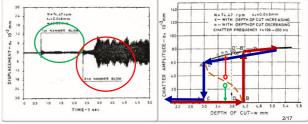
Cutting force nonlinearity against chip thickness



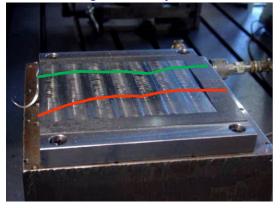
Machine tool vibration - Preliminaries

Classical experiment (Tobias, Shi, 1984)

- cutting process is sensitive to large perturbations
- self excited vibrations (chatter) "around" stable cutting
- important effect of chip thickness on size of unsafe zone

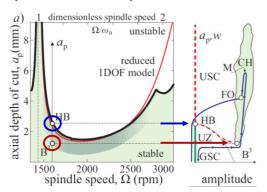


Face milling case study with IDEKO



Wavelet, time-history and bifurcations SC a_{p}, w tool OC feed FO USC М HB 64 mm UZ B^3 GSC 4 mm 200 300 frequency (Hz) amplitude acceleleration

Stability chart, bistability and bifurcations



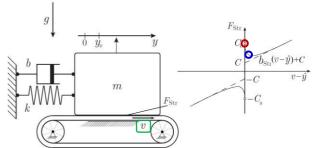
Stick-slip

Outline

- Why Hardware-in-the-Loop (HIL) for HSM?
- Stability islands can we reach/use them?
- Uncertainties of lobe diagrams: practice & theory
- Testing HIL to reproduce bistability: stick-slip
- Hopf bifurcation, stable and unstable limit cycles
- Stability, CM, secondary Hopf bifurcation in HIL
- Bistability in High-Speed-Milling (HSM)
- Experimental setup for HIL in HSM
- Outlook

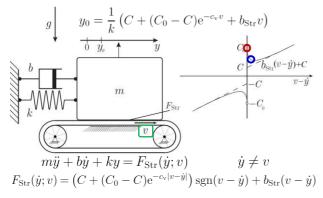
Stick-slip experiment

Simplest nonlinear mechanical model

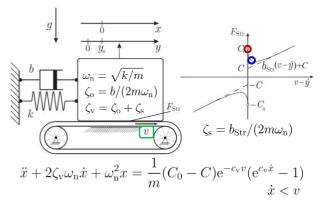


1DoF damped oscillator Stribeck friction force see more low DoF models by Leine, Bishop, Dankowitz... high DoF models by Wiercigroch, Awrejcewicz...

Simplest nonlinear mechanical model



Simplest nonlinear mechanical model



Simplest nonlinear mechanical model



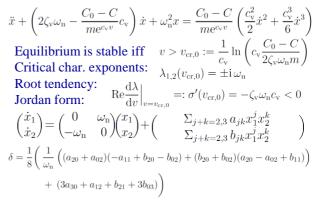
Outline

- Why Hardware-in-the-Loop (HIL) for HSM?
- Stability islands can we reach/use them?
- Uncertainties of lobe diagrams: practice & theory
- Testing HIL to reproduce bistable zones: stick-slip
- Hopf bifurcation, stable & unstable limit cycles
- Stability, CM, secondary Hopf bifurcation in HIL
- Bistability in High-Speed-Milling (HSM)
- Experimental setup for HIL in HSM
- Outlook

Stability and Hopf bifurcation

$$\begin{split} \ddot{x} + \left(2\zeta_{v}\omega_{n} - \frac{C_{0} - C}{me^{c_{v}v}}c_{v}\right)\dot{x} + \omega_{n}^{2}x &= \frac{C_{0} - C}{me^{c_{v}v}}\left(\frac{c_{v}^{2}}{2}\dot{x}^{2} + \frac{c_{v}^{3}}{6}\dot{x}^{3}\right)\\ \text{Equilibrium is stable iff} \quad v > v_{cr,0} &:= \frac{1}{c_{v}}\ln\left(c_{v}\frac{C_{0} - C}{2\zeta_{v}\omega_{n}m}\right)\\ \text{Critical char. exponents:} \quad \lambda_{1,2}(v_{cr,0}) &= \pm i\omega_{n}\\ \text{Root tendency:} \quad \operatorname{Re}\frac{d\lambda}{dv}\Big|_{v=v_{cr,0}} &=: \sigma'(v_{cr,0}) = -\zeta_{v}\omega_{n}c_{v} < 0\\ \left(\dot{x}_{1}\right) &= \begin{pmatrix}0 & \omega_{n}\\-\omega_{n} & 0\end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix} + \begin{pmatrix}0\\(\zeta_{v}\omega_{n}^{2}c_{v})x_{2}^{2} + (\zeta_{v}\omega_{n}^{3}c_{v}^{2}/3)x_{2}^{3}\end{pmatrix} \end{split}$$

Stability and Hopf bifurcation

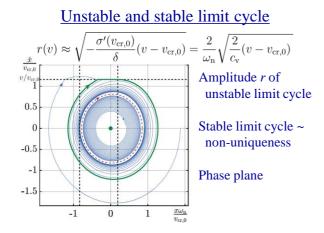


Stability and Hopf bifurcation

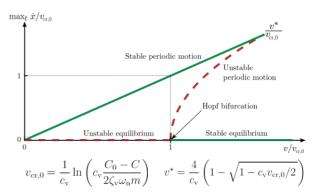
$\ddot{x} + \left(2\zeta_{\mathbf{v}}\omega_{\mathbf{n}} - \frac{C_0 - C}{me^{c_{\mathbf{v}}v}}c_{\mathbf{v}}\right)\dot{x} + \omega_{\mathbf{n}}^2 x = \frac{C_0 - C}{me^{c_{\mathbf{v}}v}}\left(\frac{c_{\mathbf{v}}^2}{2}\dot{x}^2 + \frac{c_{\mathbf{v}}^3}{6}\dot{x}^3\right)$
Equilibrium is stable iff $v > v_{cr,0} := \frac{1}{C_v} \ln \left(c_v \frac{C_0 - C}{2C_v (w,m)} \right)$
Critical char. exponents: $\lambda_{1,0}(v_{-,0}) = \pm i\omega_{0}$
Root tendency: $d\lambda_1$
Root tendency: Jordan form: $\operatorname{Re} \frac{d\lambda}{dv}\Big _{v=v_{cr,0}} =: \sigma'(v_{cr,0}) = -\zeta_v \omega_n c_v < 0$
$ \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & \omega_n \\ -\omega_n & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ (\underline{\zeta_v \omega_n^2 c_v)} x_2^2 + \underline{(\zeta_v \omega_n^3 c_v^2/3)} x_2^3 \end{pmatrix} $
$\delta = \frac{1}{8} \left(\frac{1}{\omega_{n}} \left((a_{20} + a_{02})(-a_{11} + b_{20} - b_{02}) + (b_{20} + b_{02})(a_{20} - a_{02} + b_{11}) \right) \right)$
$+ (3a_{30} + a_{12} + b_{21} + 3b_{03})$

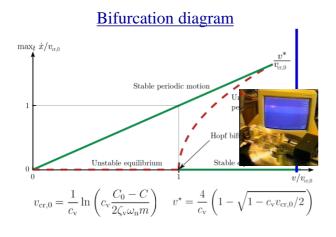
Stability and Hopf bifurcation

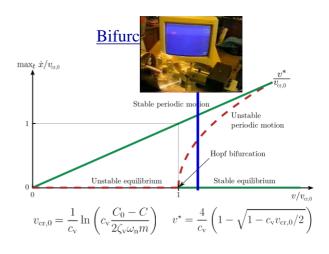
$\ddot{x} + \left(2\zeta_{v}\omega_{n} - \frac{C_{0} - C}{me^{c_{v}v}}c_{v}\right)\dot{x} + \omega_{n}^{2}x = \frac{C_{0} - C}{me^{c_{v}v}}\left(\frac{c_{v}^{2}}{2}\dot{x}^{2} + \frac{c_{v}^{3}}{6}\dot{x}^{3}\right)$
Equilibrium is stable iff $v > v_{cr,0} := \frac{1}{c_v} \ln \left(c_v \frac{C_0 - C}{2\zeta_v \omega_n m} \right)$
Critical char. exponents: $\lambda_{1,2}(v_{cr,0}) = \pm i \omega_n$
Root tendency: $d\lambda_1$
Root tendency: Jordan form: $\operatorname{Re} \frac{d\lambda}{dv}\Big _{v=v_{\mathrm{cr},0}} =: \sigma'(v_{\mathrm{cr},0}) = -\zeta_v \omega_n c_v < 0$
$ \begin{pmatrix} \dot{x}_1\\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & \omega_n\\ -\omega_n & 0 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} + \begin{pmatrix} 0\\ (\zeta_v \omega_n^2 c_v) x_2^2 + (\zeta_v \omega_n^3 c_v^2/3) x_2^3 \end{pmatrix} $
Poincaré-Lyapunov constant:
$\delta = \frac{\zeta_v \omega_n^3 c_v^2}{8} > 0 \implies \text{subcritical Hopf bifurcation} \\ \text{unstable limit cycle for } v > v_{\text{cr},0}$
8 unstable limit cycle for $v > v_{cr,0}$



Bifurcation diagram







Stick-slip at low speed

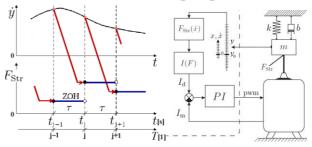
Stick-slip at low speed

Stick-slip at low speed

Outline

- Why Hardware-in-the-Loop (HIL) for HSM?
- Stability islands can we reach/use them? -
- Uncertainties of lobe diagrams: practice & theory -
- Testing HIL to reproduce bistable zones: stick-slip
- Hopf bifurcation, stable and unstable limit cycles -
- Stability, CM, secondary Hopf in HIL
- Bistability in High-Speed-Milling (HSM) -
- _ Experimental setup for HIL in HSM
- Outlook

Hardware-in-the-loop experiment



Stribeck force emulated by computer code & control: $m\ddot{y}(t) + b\dot{y}(t) + ky(t) = F_{\text{Str}}(\dot{y}(t_j - \tau); v)$ $t_i = j\tau$ $t \in [t_i, t_i + \tau), \ j = 1, 2, \dots$

Modeling the sampling effect

 $m\ddot{y}(t) + b\dot{y}(t) + ky(t) = F_{\text{Str}}(\dot{y}(t_i - \tau); v) \qquad t \in [t_i, t_i + \tau)$ The equilibrium remains the same in the digital case $\ddot{x}(t) + 2\zeta_{\mathrm{o}}\omega_{\mathrm{n}}\dot{x}(t) + \omega_{\mathrm{n}}^{2}x(t) = \frac{C_{0} - C}{\mathrm{me}^{c_{\mathrm{v}}v}}(\mathrm{e}^{c_{\mathrm{v}}\dot{x}(t_{j}-\tau)} - 1) - 2\zeta_{\mathrm{s}}\omega_{\mathrm{n}}\dot{x}(t_{j}-\tau)$ New damping ratios are introduced:

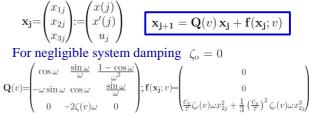
$$\zeta(v) = -\zeta_{\rm c}(v) + \zeta_{\rm s} \,, \quad \zeta_{\rm c}(v) = c_{\rm v} \frac{C_0 - C}{2m\omega_{\rm n} {\rm e}^{c_{\rm v} v}}$$

Dimensionless time: $t = \tau T$, $\dot{x} = \frac{1}{\tau} x'$ Frequency ratio:

 $\omega := \omega_{\rm n} \tau = 2\pi \frac{f_{\rm n}}{f_{\rm s}} \xleftarrow{} \text{natural frequency (undamped)} \\ \xleftarrow{} \text{sampling frequency}$

Modeling the sampling effect

 $x''(T) + 2\zeta_{o}\omega x'(T) + \omega^{2}x(T) = u_{i}, \ T \in [j, j+1)$ $u_j = -2\zeta(v)\omega x'(j-1) + \frac{c_v}{\tau}\zeta_c(v)\omega x'^2(j-1) + \frac{1}{3}\left(\frac{c_v}{\tau}\right)^2\zeta_c(v)\omega x'^3(j-1)$ With the help of the piece-wise closed form solution:



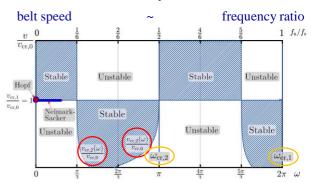
Stability of the equilibrium

$$\begin{aligned} \mathbf{x_{j+1}} &= \mathbf{Q}(v) \, \mathbf{x_j} + \mathbf{f}(\mathbf{x_j}; v); \, \det(\mu \mathbf{I} - \mathbf{Q}(v)) = 0; \, |\mu_{1,2,3}| < 1 \\ \mu^3 - 2(\cos \omega) \mu^2 + (2\zeta(v) \sin \omega + 1) \mu - 2\zeta(v) \sin \omega = 0 \\ \end{aligned}$$
Critical parameters and characteristic multipliers:

$$\begin{aligned} \omega_{\text{cr,1}} &= 2j\pi & \Rightarrow \mu_{1,2} = +1, \, \mu_3 = 0; \, (j = 1, 2, ...) \\ \omega_{\text{cr,2}} &= (2j - 1)\pi & \Rightarrow \mu_{1,2} = -1, \, \mu_3 = 0; \, (j = 1, 2, ...) \\ \hline \zeta_{\text{cr,1}} &= 0 & \Rightarrow \mu_{1,2} = \cos \omega \pm i \sin \omega, \, \mu_3 = 0; \end{aligned}$$

$$\begin{aligned} \zeta_{\text{cr,2}} &= -\frac{1 - 2 \cos \omega}{2 \sin \omega} \Rightarrow \mu_{1,2} = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}, \, \mu_3 = -(1 - 2 \cos \omega) \\ \hline v_{\text{cr,1}} &= \frac{1}{c_{\text{v}}} \ln \left(c_{\text{v}} \frac{C_0 - C}{2\zeta_{\text{s}} \omega_{\text{n}} m} \right), \quad \text{the same as before!!!} \\ \hline v_{\text{cr,2}}(\omega) &= \frac{1}{c_{\text{v}}} \ln \left(c_{\text{v}} \frac{C_0 - C}{(2\zeta_{\text{s}} - (1 - 2 \cos \omega)/\sin \omega)\omega_{\text{n}} m} \right) ??? \end{aligned}$$

Stability chart



Neimark-Sacker bifurcation

Equilibrium is stable iff $v > v_{cr,1}$ for $\omega < \pi/3$ Critical char. multipliers: $\mu_{1,2}(v_{cr,1}) = \cos \omega \pm i \sin \omega$ Root tendency: $\frac{d|\mu|}{dv}\Big|_{v=v_{cr,1}} = c_v \zeta_s \sin \omega (1 - 2\cos \omega) < 0$ for Jordan form: $\mathbf{z}_{\mathbf{j}+1} = \mathbf{T}^{-1}\mathbf{Q}(v_{cr,1})\mathbf{T} \mathbf{z}_{\mathbf{j}} + \mathbf{T}^{-1}\mathbf{f}(\mathbf{T}\mathbf{z}_{\mathbf{j}}; v_{cr,1})$ $\begin{pmatrix} \cos \omega & \sin \omega & 0 \\ -\sin \omega & \cos \omega & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ c_{020}z_{2j}^2 + \underbrace{0}_{011}z_{2j}z_{3j}^2 + \ldots \end{pmatrix}$ Center Manifold reduction: $z_3 = h_{20}z_1^2 + h_{11}z_1z_2 + h_{02}z_2^2$ $h_{20} = \frac{c_v}{\tau}\zeta_s\omega^3 \sin^2\omega, \ h_{11} = \frac{c_v}{\tau}\zeta_s\omega^3 \sin(2\omega), \ h_{02} = \frac{c_v}{\tau}\zeta_s\omega^3 \cos^2\omega$

Restriction to CM:

 $\begin{pmatrix} z_{1,j+1} \\ z_{2,j+1} \end{pmatrix} = \begin{pmatrix} \cos \omega & \sin \omega \\ -\sin \omega & \cos \omega \end{pmatrix} \begin{pmatrix} z_{1,j} \\ z_{2,j} \end{pmatrix} + \begin{pmatrix} \sum_{j+k=2,3} a_{jk} z_1^j z_2^k \\ \sum_{j+k=2,3} b_{jk} z_1^j z_2^k \end{pmatrix}$

$\frac{\text{Neimark-Sacker bifurcation}}{\binom{z_{1,j+1}}{z_{2,j+1}} = \binom{\cos \omega & \sin \omega}{-\sin \omega & \cos \omega} \binom{z_{1,j}}{z_{2,j}} + \binom{\sum_{j+k=2,3} a_{jk} z_1^j z_2^k}{\sum_{j+k=2,3} b_{jk} z_1^j z_2^k}}$ All coefficients are proportional to ζ_s^2 except $a_{03} = -\frac{1}{3} \binom{c_v}{\tau}^2 \zeta_s \omega^2 (1 - \cos \omega) \quad \text{and} \quad b_{03} = \frac{1}{3} \binom{c_v}{\tau}^2 \zeta_s \omega^2 \sin \omega$ Poincaré-Lyapunov constant (see G Orosz, *Physica D*, 2014) $\Delta = \frac{1}{8} ((3a_{30} + a_{12} + b_{21} + 3b_{32}) \cos \omega + (3b_{33} + a_{21} - b_{12} - 3b_{33}) \sin \omega)$ $+ \frac{1}{16} (-(2a_{20}a_{02} + 2b_{20}b_{02} + a_{11}^2 + b_{11}^2) + 2(a_{20}^2 + b_{02}^2)(1 - 2\cos \omega) \cos \omega$ $- 2(a_{12}^2 + b_{23}^2)(3 - 2\cos \omega)(1 + \cos \omega)$ $+ (a_{20}b_{11} + a_{11}b_{02})(5 + 2\cos \omega - 4\cos^2 \omega)$

- $+(a_{11}b_{20}+a_{02}b_{11})(1+2\cos\omega-4\cos^2\omega)$
- $-\left((a_{20}+a_{02})(-a_{11}+b_{20}-b_{02})+(b_{20}+b_{02})(a_{20}-a_{02}+b_{11})\right)$
- $\times \frac{\sin\omega}{1-\cos\omega} (1-6\cos\omega+4\cos^2\omega)$

Neimark-Sacker bifurcation

$$\begin{pmatrix} z_{1,j+1} \\ z_{2,j+1} \end{pmatrix} = \begin{pmatrix} \cos \omega & \sin \omega \\ -\sin \omega & \cos \omega \end{pmatrix} \begin{pmatrix} z_{1,j} \\ z_{2,j} \end{pmatrix} + \begin{pmatrix} \Sigma_{j+k=2,3} a_{jk} z_1^j z_2^k \\ \Sigma_{j+k=2,3} b_{jk} z_1^j z_2^k \end{pmatrix}$$

All coefficients are proportional to ζ_s^2 except

$$a_{03} = -\frac{1}{3} \left(\frac{c_v}{\tau}\right)^2 \zeta_s \omega^2 (1 - \cos \omega)$$
 and $b_{03} = \frac{1}{3} \left(\frac{c_v}{\tau}\right)^2 \zeta_s \omega^2 \sin \omega$

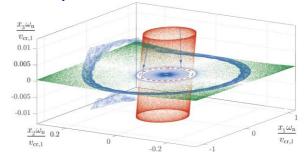
Poincaré-Lyapunov constant:

 $\Delta \approx \left(\frac{c_v}{\tau}\right)^2 \zeta_s \omega^2 \sin \omega (2\cos \omega - 1) > 0 \quad \text{for } 0 < \omega \leq \pi/3 \iff f_s \gtrsim 6f_n$ Subcritical NS, unstable periodic iteration

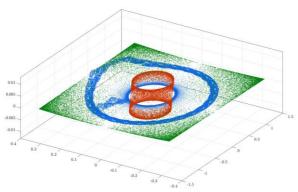
$$r(v) \approx \sqrt{\frac{|\mu|'(v_{\rm cr,1})}{\Delta}(v - v_{\rm cr,1})} \approx \frac{2}{\omega_{\rm n}} \sqrt{\frac{2}{c_{\rm v}}(v - v_{\rm cr,1})}$$

For small system and Stribeck viscous damping and large enough sampling frequency \Rightarrow same vibration

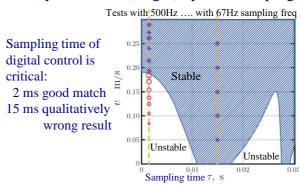
<u>Global dynamics of digital system</u> Analytical results and numerical simulations

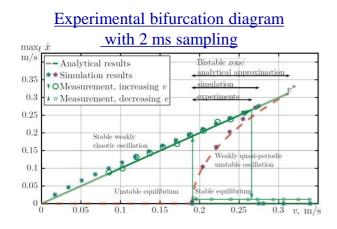


Micro-chaos appears instead of large stable limit cycle due to discretization in space (round-off) (Haller, Stepan)

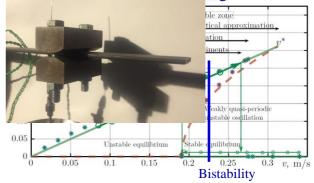


<u>Global dynamics of digital system</u> <u>Stability chart with (slight) system damping</u>

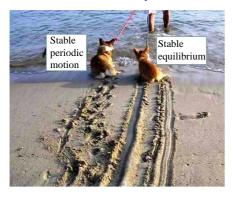




Experimental bifurcation diagram with 2 ms sampling

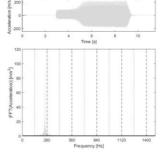


Bistability

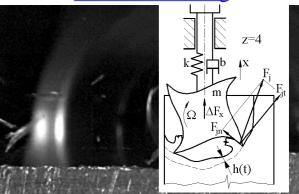


Outline

- Why Hardware-in-the-Loop (HIL) for HSM?
- Stability islands can we reach/use them?
- Uncertainties of lobe diagrams: practice & theory
- Testing HIL to reproduce bistable zones: stick-slip
- Hopf bifurcation, stable and unstable limit cycles
- Stability, CM, secondary Hopf bifurcation in HIL
- Bistability in High-Speed-Milling (HSM)
- Experimental setup for HIL in HSM
- Outlook

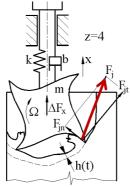


Introduction to milling

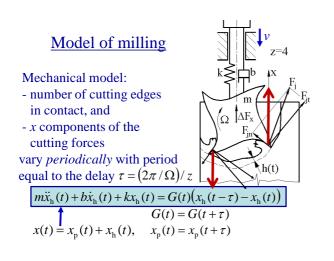


Introduction to milling

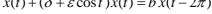
- Number of cutting edges in contact varies periodically with period equal to the delay between two subsequent cutting edges.
- Thus, the resultant cutting force also varies with the same period.

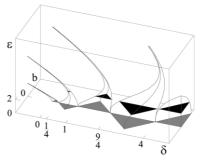


Introduction to milling

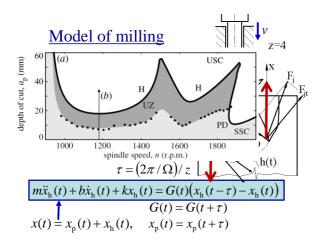


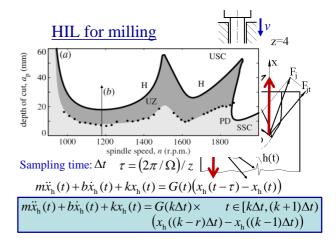
Stability chart of delayed Mathieu $\ddot{x}(t) + (\delta + \varepsilon \cos t) x(t) = b x(t - 2\pi)$

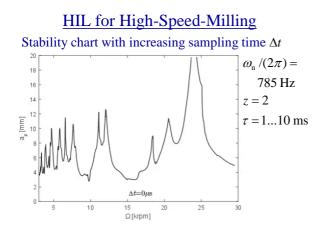


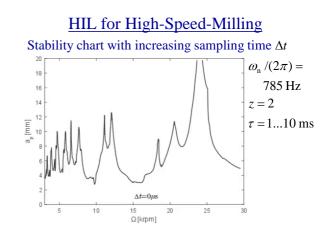


Insperger, Stepan Proc. Roy. Soc. A (2002)



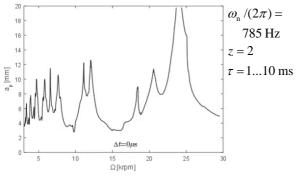






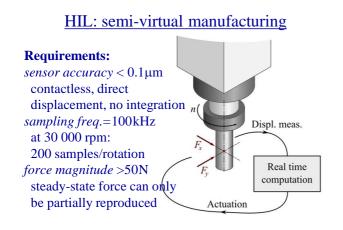
HIL for High-Speed-Milling

Stability chart with increasing sampling time Δt

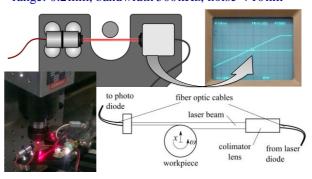


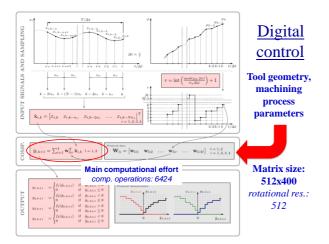
Outline

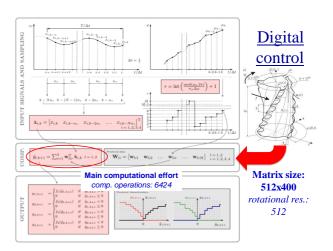
- Why Hardware-in-the-Loop (HIL) for HSM?
- Stability islands can we reach/use them?
- Uncertainties of lobe diagrams: practice & theory
- Testing HIL to reproduce bistable zones: stick-slip
- Hopf bifurcation, stable and unstable limit cycles
- Stability, CM, secondary Hopf bifurcation in HIL
- Bistability in High-Speed-Milling (HSM)
- Experimental setup for HIL in HSM
- Outlook



Sensing position on rotating spindle Photonic beam reduction (FBR) sensor range: 0.2mm, bandwidth 500kHz, noise < 10nm





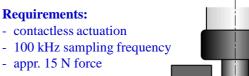


Digital control

Performed with FPGA technology

2 FPGA modules NI7976R 406 720 logic cells 28 620 Kbit block RAM

Actuator at rotating tool



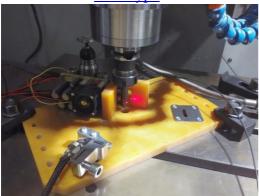
Electro magnetic actuator:

Problems:

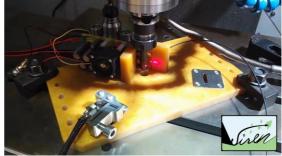
- eddy current
- heat transfer
- current control

(Rantatalo et al. 2007, Yamazaki et al. 2010, Matsubara et al. 2015)

< | > n

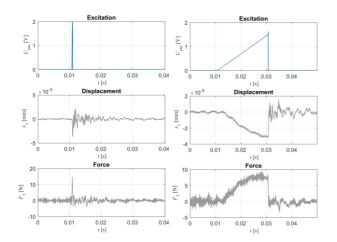


Series of tests #1: 0 rpm, impulses with low (1 Hz) frequency

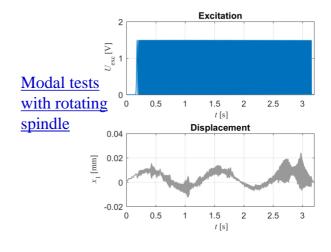


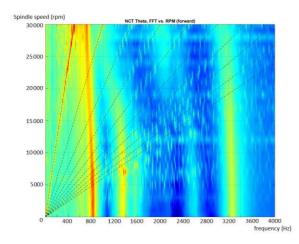
1000 spikes each having 30µs width result in 0.1s non-zero force

Prototype

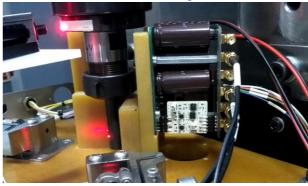


Series of tests #3: increasing rpm, sweep excitation

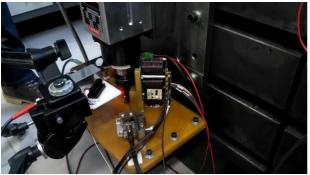




Series of tests #4: Close the loop !!!

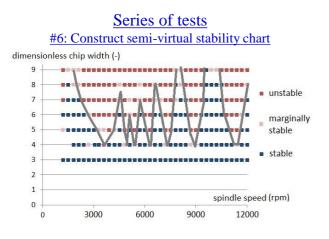


<u>Series of tests</u> #5: Instabilities at real speeds & virtual depths of cut



#6: Measure semi-virtual stability chart dimensionless chip width (-) 9 8 unstable 7 6 marginally 5 stable 4 stable 3 2 1 spindle speed (rpm) 0 12000 3000 6000 9000 0

Series of tests

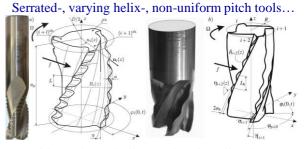


Series of tests #6: This is not process damping (unfortunately...) dimensionless chip width (-) 9 8 unstable 7 6 marginally 5 stable 4 stable 3 2 1 spindle speed (rpm) 0 3000 6000 9000 12000 0

<u>Outline</u>

- Why Hardware-in-the-Loop (HIL) for HSM?
- Stability islands can we reach/use them?
- Uncertainties of lobe diagrams: practice & theory
- Testing HIL to reproduce bistable zones: stick-slip
- Hopf bifurcation, stable and unstable limit cycles
- Stability, CM, secondary Hopf bifurcation in HIL
- Bistability in High-Speed-Milling (HSM)
- Experimental setup for HIL in HSM
- Outlook

<u>Outlook</u>

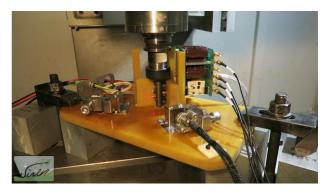


... with varying spindle speed, active vibration absorbers – the models may/will fail, too complex

HIL: Semi-virtual high-speed milling

- Improved modal test ("almost" real conditions and real time)
- Development of special tool geometries without prototyping
- Test manufacturing without material consumption
- Identify the unknown effects and their sources in milling process (with known cutting force)
- Test theoretical spindle and bearing models
- Compare and verify cutting force theories
- Identify theoretically stable parameter domains

EU project / Beethoven's 9th symphony



Thank you for your attention!