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X-ray intensity attenuates inside matter,
here shown with a homogeneous block

https://www.youtube.com/watch?v=IfXo2S1xXCQ

https://www.youtube.com/watch?v=IfXo2S1xXCQ


Here is a more complicated example:
a 2D slice through a human head

Andrew Ciscel,
Wikimedia commons



Now the attenuation process is more complicated
because there are different tissues

https://youtu.be/lvUAOeS1sv8

https://youtu.be/lvUAOeS1sv8


After calibration we are observing how much
attenuating matter the X-ray encounters in total

https://youtu.be/RFArLtWEfsQ

https://youtu.be/RFArLtWEfsQ


This sweeping movement is the data collection
mode of first-generation CT scanners

https://youtu.be/JHUz5oyeZb0

https://youtu.be/JHUz5oyeZb0


Modern CT scanners look like this
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Modern scanners rotate at high speed
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https://commons.wikimedia.org/wiki/File:CT-Rotation.ogv

https://commons.wikimedia.org/wiki/File:CT-Rotation.ogv


This is the inverse problem of tomography:
we only know the data

https://youtu.be/pr8bXB0oAqI

https://youtu.be/pr8bXB0oAqI


This is an illustration of the standard
reconstruction by filtered back-projection

https://youtu.be/tRD58IO1FKw

https://youtu.be/tRD58IO1FKw


Godfrey Hounsfield and Allan McLeod Cormack
developed X-ray tomography

Hounsfield (top) and Cormack
received Nobel prizes in 1979.



Reconstruction of a function from its line integrals
was first invented by Johann Radon in 1917

Johann Radon (1887-1956)

f (P) = −1
π

∫ ∞
0

dFp(q)

q



Diagnosing stroke with X-ray tomography
Ischemic stroke

CT image from Jansen 2008

Hemorrhagic stroke

CT image from Nakano et al. 2001



Tomography:

case closed?
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We collected X-ray projection data of a walnut
from 1200 directions

Laboratory and data collection by
Keijo Hämäläinen and Aki Kallonen,
University of Helsinki.

The data is openly available at
http://fips.fi/dataset.php, thanks to
Esa Niemi and Antti Kujanpää



Reconstructions of a 2D slice through the walnut
using filtered back-projection (FBP)

FBP with comprehensive data
(1200 projections)

FBP with sparse data
(20 projections)



Sparse-data reconstruction of the walnut using
non-negative total variation regularization

Filtered back-projection Constrained TV regularization
argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖∇f ‖1

}



TV tomography: argmin
f ∈Rn

{‖Af −m‖22 + α‖∇f ‖1}

1992 Rudin, Osher & Fatemi: denoise images by taking A = I
1998 Delaney & Bresler
2001 Persson, Bone & Elmqvist
2003 Kolehmainen, S, Järvenpää, Kaipio, Koistinen, Lassas, Pirttilä

& Somersalo (first TV work with measured X-ray data)
2006 Kolehmainen, Vanne, S, Järvenpää, Kaipio, Lassas & Kalke
2006 Sidky, Kao & Pan
2008 Liao & Sapiro
2008 Sidky & Pan
2008 Herman & Davidi
2009 Tang, Nett & Chen
2009 Duan, Zhang, Xing, Chen & Cheng
2010 Bian, Han, Sidky, Cao, Lu, Zhou & Pan
2011 Jensen, Jørgensen, Hansen & Jensen
2011 Tian, Jia, Yuan, Pan & Jiang
2012–present: dozens of articles indicated by Google Scholar
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A projection image is produced by parallel X-rays
and several detector pixels (here three pixels)

13 (=4+4+5)

8 (=1+3+4)

3 (=1+0+2)

4 4 5

1 3 4

1 0 2

• -

• -

• -

Detector



For tomographic imaging it is essential to record
projection images from different directions
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The length of X-rays traveling inside each pixel is
important, thus here the square roots
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The direct problem of tomography is to find the
projection images from known tissue
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The inverse problem of tomography is to
reconstruct the interior from X-ray data
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The limited-angle problem is harder than
the full-angle problem

? ? ?
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In limited-angle imaging, different objects may
produce the same data
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Mathematically this means that
the matrix A has nontrivial kernel.
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We write the reconstruction problem
in matrix form

f1 f4 f7

f2 f5 f8

f3 f6 f9
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Measurement model: m = Af + ε

f =



f1
f2
f3
f4
f5
f6
f7
f8
f9


, m =



m1
m2
m3
m4
m5
m6

 ,

m
1

m
2

m
3

m4

m5

m6



This is the matrix equation related to
the above measurement

m1
m2
m3
m4
m5
m6

 =



0
√
2 0 0 0

√
2 0 0 0√

2 0 0 0
√
2 0 0 0

√
2

0 0 0
√
2 0 0 0

√
2 0

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1





f1
f2
f3
f4
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f6
f7
f8
f9


+



ε1
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ε3
ε4
ε5
ε6
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f = 0

f = 0.44

0.16 0.16

Let us construct a more complicated example



Discretize the unknown by dividing it into pixels

Target (unknown) 32×32 pixel grid



System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown
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System matrix A, given by the grid and X-rays
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System matrix A, given by the grid and X-rays

32×32 pixel grid735×1024 system matrix A,
only nonzero elements shown



What can we expect to see from sparse data?

Object Sinogram

@
�

A

[Cormack 1963], [Smith, Solmon & Wagner 1977, Theorem 4.2]



Naive reconstruction using the minimum norm
solution from the normal equation (ATA)f † = ATm

Original phantom, values between
zero (black) and 0.44

Reconstruction: minimum pixel value
−1.5 ·1014, maximum value 1.3 ·1014



Naive reconstruction using the minimum norm
solution with non-negativity constraint

Original phantom, values between
zero (black) and 0.44

Reconstruction: minimum value 0,
maximum value 2.3



Illustration of the ill-posedness of sparse
tomography

Difference 0.00992
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A

A



Illustration of the ill-posedness of sparse
tomography

Difference 0.00983

@
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@
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A

A



Singular value decomposition A = UTDV

1 200 400 600 735

10
-15

10
-10

10
-5

10
0

Singular values of A
(diagonal of D)

735×1024 system matrix A,
only nonzero elements shown
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Daubechies, Defrise and de Mol introduced
a revolutionary inversion method in 2004

Consider the sparsity-promoting variational regularization

argmin
f ∈Rn

{
‖Af −m‖22 + µ‖Wf ‖1

}
,

where W is an orthonormal wavelet transform. The minimizer can
be computed using the iteration

fj+1 = W−1SµW
(
fj + AT (m − Afj)

)
,

where the soft-thresholding operation

Sµ(x) =


x + µ

2 if x ≤ −µ
2 ,

0 if |x | < µ
2 ,

x − µ
2 if x ≥ µ

2 ,

is applied to each wavelet coefficient separately.



We modify the method so that non-negativity
constraint has rigorous mathematical foundation

The minimizer

argmin
f ∈Rn

+

{
1
2
‖Af −m‖22 + µ ‖Wf ‖1

}

can be computed using this iteration:

y (i+1) = PC

(
f (i) − τ∇g(f (i))− λW T v (i)

)
v (i+1) =

(
I − Sµ

)(
Wy (i+1) + v (i)

)
f (i+1) = PC

(
f (i) − τ∇g(f (i))− λW T v (i+1)

)
where τ > 0, λ > 0 and g(f ) = 1

2‖Af −m‖22. Here PC denotes
projection to the non-negative “quadrant.”

[Loris & Verhoeven 2011], [Chen, Huang & Zhang 2016]



Illustration of the Haar wavelet transform



Sparse-data reconstruction of the walnut using
Haar wavelet sparsity

Filtered back-projection Constrained Besov regularization
argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖f ‖B1

11

}



How to choose the thresholding parameter µ?
Here it is too small.



How to choose the thresholding parameter µ?
Here it is too large.



Automatic parameter choice using
controlled wavelet-domain sparsity (CWDS)

Assume given the a priori sparsity level 0 ≤ Cpr ≤ 1.
Denote by Cj the sparsity of the jth iterate fj ∈ Rn:

Cj = (number of nonzero elements in Wfj ∈ Rn)/n.

The CWDS iteration is based on proportional-integral-derivative
(PID) controllers:

µ(i+1) = µ(i) + β(C(i) − Cpr).

[Purisha, Rimpeläinen, Bubba & S 2018]



CWDS choice of the thresholding parameter µ



CWDS choice of the thresholding parameter µ
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This is a joint work with

Tatiana Bubba, University of Helsinki, Finland

Sakari Karhula, Oulu University Hospital, Finland

Juuso Ketola, Oulu University Hospital, Finland

Maximilian März, TU Berlin

Miika T. Nieminen, University of Oulu, Finland

Zenith Purisha, University of Helsinki, Finland

Juho Rimpeläinen, University of Helsinki, Finland

Simo Saarakkala, Oulu University Hospital, Finland



Image by Bruce Blaus, CC BY-SA 4.0
https://commons.wikimedia.org/w/index.php?curid=44968165

https://commons.wikimedia.org/w/index.php?curid=44968165


We consider small specimens of human bone
imaged using microtomography

Slice of 3D reconstruction by FDK
based on 596 angles

Three-dimensional structure



We pick out a smaller region of interest
for osteoarthritis analysis

Slice of 3D reconstruction by FDK
based on 596 angles

Slice of 3D region of interest
after binary thresholding



We use two numerical quality measures applied
to segmented three-dimensional bone structure

Trabecular thickness Trabecular separation

[Bouxsein, Boyd, Christiansen, Guldberg, Jepsen, & Müller 2010]



The goal is to reduce measurement time
by recording fewer radiographs

3D FDK reconstruction
based on 40 angles

3D shearlet-sparsity reconstruction
based on 40 angles



Thickness Separation

Thickness Separation

0.34 0.71

0.37 0.35

Projections: 300

Projections: 300

[Purisha, Karhula, Rimpeläinen, Nieminen, Saarakkala & S, submitted]

Bone quality parameters from ground truth



Thickness Separation
0.34 0.71

0.37 0.35

Projections: 300

Projections: 50

Projections: 30

Projections: 300

Projections: 50

Projections: 30

[Purisha, Karhula, Rimpeläinen, Nieminen, Saarakkala & S, submitted]

Results from FDK reconstructions



Thickness Separation
0.34 0.71

0.37 0.35

Projections: 300

Projections: 50

Projections: 30

Projections: 300

Projections: 50

Projections: 30

[Purisha, Karhula, Rimpeläinen, Nieminen, Saarakkala & S, submitted]

Results from 3D shearlet-sparsity reconstructions
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Construction of limited-angle sinogram

0◦ 90◦ 180◦
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Construction of limited-angle sinogram
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Construction of limited-angle sinogram

0◦ 90◦ 180◦



SVD reveals the ill-posedness of the limited-angle
problem, see Davison 1983 and Louis 1986

1 200 400 600 735

10
-15

10
-10

10
-5

10
0

Singular values of A
(diagonal of D)

735×1024 system matrix A,
only nonzero elements shown



Limited data gives only part of the wavefront set

Stable part of wavefront set Unstable part of wavefront set

See [Greenleaf & Uhlmann 1989], [Quinto 1993], and [Frikel & Quinto 2013]



Constrained total variation (TV) regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖∇f ‖1

}

Stable part of wavefront set TV regularized reconstruction
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Application: dental implant planning, where a
missing tooth is replaced with an implant



This is the classical imaging procedure
of the panoramic X-ray device

https://www.youtube.com/watch?v=QFTXegPxC4U

https://www.youtube.com/watch?v=QFTXegPxC4U


The resulting image shows a sharp layer
positioned inside the dental arc



Nowadays, a digital panoramic imaging device is
standard equipment at dental clinics

A panoramic dental image offers a
general overview showing all teeth
and other structures simultaneously.

Panoramic images are not suitable
for dental implant planning because
of unavoidable geometric distortion.

•

X-ray source

Narrow detector



We reprogram the panoramic X-ray device so that
it collects projection data by scanning

https://www.youtube.com/watch?v=motthjiP8ZQ

https://www.youtube.com/watch?v=motthjiP8ZQ


We reprogram the panoramic X-ray device so that
it collects projection data by scanning
Number of projection images: 11

Angle of view: 40 degrees

Image size: 1000×1000 pixels

The unknown vector f has
7 000 000 elements.



Standard Cone Beam CT reconstruction delivers
100 times more radiation than VT imaging

VT imaging Cone Beam CT

Kolehmainen, Vanne, S, Järvenpää, Kaipio,
Lassas & Kalke 2006
Kolehmainen, Lassas & S 2008
Cederlund, Kalke & Welander 2009
Hyvönen, Kalke, Lassas, Setälä & S 2010
U.S. patent 7269241, thousands of VT units in use



The VT device was developed in 2001–2012 by
Nuutti Hyvönen
Seppo Järvenpää
Jari Kaipio
Martti Kalke
Petri Koistinen
Ville Kolehmainen
Matti Lassas
Jan Moberg
Kati Niinimäki
Juha Pirttilä
Maaria Rantala
Eero Saksman
Henri Setälä
Erkki Somersalo
Antti Vanne
Simopekka Vänskä
Richard L. Webber



Outline

Traditional X-ray tomography

Tomographic imaging with sparse data
Discrete model tor tomography
Ill-posedness of the inverse problem
Regularization using frame-based sparsity

Hospital case study: diagnosing osteoarthritis

Limited angle tomography

Industrial case study: low-dose 3D dental X-ray imaging

Industrial case study: welding inspection

Conclusion



This part is a joint work with

Alexander Meaney, University of Helsinki, Finland

Esa Niemi, Eniram Ltd., Finland

Aaro Salosensaari, University of Helsinki, Finland

Industrial partners:

Kemppi Ltd. (welding tool manufacturer)

Ajat Ltd. (X-ray detector manufacturer)



Two steel pipes partly welded together



This is the limited-angle measurement geometry
for a narrow CaTd direct conversion detector



Reconstruction algorithm: variant of TVR-DART

With a regularization parameter α > 0, we minimize

argmin
x∈RN

{‖AS(x)−m‖22 + αTVβ(x)},

where S : RN → RN is a soft segmentation function given by

S(x) =
G∑

g=2

(ρg − ρg−1)u(x − τg , kg ),

with u(x , kg ) = (1+ e−2kgx)−1, and kg = K/(ρg − ρg−1). Here
G = 2 is the number of materials and 3 < K < 6 is called a
transition constant. The parameters ρg are the pre-known
attenuation values of the materials and τg are the threshold levels
between the different attenuations with τ1 = 0. Above TVβ is

TVβ =
∑
i ,j

√
(xi+1 − xi )2 + (xi+n − xi )2 + β, β > 0.



Reconstruction algorithm: variant of TVR-DART

We mostly follow [Zhuge, Palenstijn & Batenburg 2016] in the
implementation of TVR-DART.

However, we make one bigger modification. In this application it
makes a huge difference to restrict the degrees of freedom in the
domain occupied by the pipe walls.



Traditional reconstruction by tomosynthesis

Simulated phantom:

Tomosynthesis:



TVR-DART with domain restriction

Simulated phantom:

TVR-DART:



Phantom

Tomosynthesis

TVR-DART













Reconstructions from measured data

Tomosynthesis

TVR-DART

[Niemi, Salosensaari, Meaney & S, submitted manuscript]
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Tomography appears in adaptive optics

I Modern telescope
imaging suffers from
turbulence in the
atmosphere
⇒ blurring of images

I Adaptive optics corrects
the perturbed incoming
light in real-time

I Major challenge in
wide-field AO:
atmospheric tomography

European Extremely Large Telescope (2024)

Helin, Kindermann, Lehtonen & Ramlau 2018
Yudytskiy, Helin & Ramlau 2014



Cosmic muon imaging revealed a secret chamber
inside the Pyramid of Cheops

ScanP
yram

ids





Electron transmission cryotomography reveals
the swimming engine of Treponema primitia bacteria

[Murphy, Leadbetter & Jensen 2016]



University of Helsinki microtomography lab



Links to open computational resources

Open CT datasets:
•Finnish Inverse Problems Society (FIPS) dataset page

Matrix-based parallel-beam reconstruction algorithms:
FIPS Computational Blog
•Truncated SVD
•Total Variation regularization

Matrix-free large-scale reconstruction algorithms:
•Matlab page of Mueller-S 2012 book
•ASTRA toolbox
•TVReg: Software for 3D Total Variation Regularization

http://fips.fi/dataset.php
https://blog.fips.fi/uncategorized/simple-simulation-of-x-ray-tomography/
https://blog.fips.fi/uncategorized/total-variation-regularization-for-x-ray-tomography/
https://wiki.helsinki.fi/display/mathstatHenkilokunta/Matrix-free+X-ray+tomography+with+sparse+data
http://www.astra-toolbox.com/
http://www.imm.dtu.dk/~pcha/TVReg/


Thank you for your attention!



All Matlab codes freely
available at this site!

Part I: Linear Inverse Problems
1 Introduction
2 Naïve reconstructions and inverse crimes
3 Ill-Posedness in Inverse Problems
4 Truncated singular value decomposition
5 Tikhonov regularization
6 Total variation regularization
7 Besov space regularization using wavelets
8 Discretization-invariance
9 Practical X-ray tomography with limited data
10 Projects

Part II: Nonlinear Inverse Problems
11 Nonlinear inversion
12 Electrical impedance tomography
13 Simulation of noisy EIT data
14 Complex geometrical optics solutions
15 A regularized D-bar method for direct EIT
16 Other direct solution methods for EIT
17 Projects

http://wiki.helsinki.fi/display/mathstatHenkilokunta/Inverse+Problems+Book+Page


Another great resource is Per Christian Hansen’s
3D tomography toolbox TVreg

TVreg: Software for 3D Total Variation Regularization (for
Matlab Version 7.5 or later), developed by Tobias Lindstrøm
Jensen, Jakob Heide Jørgensen, Per Christian Hansen, and
Søren Holdt Jensen.

Website: http://www2.imm.dtu.dk/ pcha/TVReg/



These books are recommended for learning
the mathematics of practical X-ray tomography
1983 Deans: The Radon Transform and Some of Its Applications
1986 Natterer: The mathematics of computerized tomography
1988 Kak & Slaney: Principles of computerized tomographic imaging
1996 Engl, Hanke & Neubauer: Regularization of inverse problems
1998 Hansen: Rank-deficient and discrete ill-posed problems
2001 Natterer & Wübbeling: Mathematical Methods in Image
Reconstruction
2008 Buzug: Computed Tomography: From Photon Statistics to
Modern Cone-Beam CT
2008 Epstein: Introduction to the mathematics of medical imaging
2010 Hansen: Discrete inverse problems
2012 Mueller & S: Linear and Nonlinear Inverse Problems with
Practical Applications
2014 Kuchment: The Radon Transform and Medical Imaging
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